Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566121

RESUMO

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Assuntos
Carcinoma , Glutaminase , Humanos , Glutaminase/genética , Multiômica , Pesquisa , Biomarcadores
2.
NeuroRehabilitation ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640179

RESUMO

BACKGROUND: The therapeutic effect and mechanism of robot-assisted upper limb training (RT) combined with intermittent theta burst stimulation (iTBS) for stroke patients are unclear. OBJECTIVE: The purpose of this study was to evaluate changes in brain activation after combination therapy and RT alone using functional near-infrared spectroscopy (fNIRS). METHODS: Patients were randomly assigned to two groups (iTBS + RT Group, n = 18, and RT Group, n = 18). Training was conducted five times a week for four weeks. fNIRS was used to measure changes in oxyhemoglobin in both the primary motor cortex (M1) and pre-motor and supplementary motor area (pSMA) during affected limb movement. Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was employed for evaluating the function of upper limbs. RESULTS: Thirty-two patients with subacute stroke completed the study. The cortex of both hemispheres was extensively activated prior to treatment in the RT group. After training, overactivation decreased. The brain activation of the combined treatment group transferred to the affected side after the treatment. There was a notable enhancement in the FMA-UE scores for both groups, with the combined group's progress significantly surpassing that of the RT group. CONCLUSION: RT combined with iTBS can improve the motor function of stroke patients and promote the balance between cerebral hemispheres.

3.
Adv Sci (Weinh) ; : e2309645, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650176

RESUMO

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

4.
Transl Psychiatry ; 14(1): 134, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443348

RESUMO

Suicidal behavior and non-suicidal self-injury (NSSI) are common in adolescent patients with major depressive disorder (MDD). Thus, delineating the unique characteristics of suicide attempters having adolescent MDD with NSSI is important for suicide prediction in the clinical setting. Here, we performed psychological and biochemical assessments of 130 youths having MDD with NSSI. Participants were divided into two groups according to the presence/absence of suicide attempts (SAs). Our results demonstrated that the age of suicide attempters is lower than that of non-attempters in participants having adolescent MDD with NSSI; suicide attempters had higher Barratt Impulsiveness Scale (BIS-11) impulsivity scores and lower serum CRP and cortisol levels than those having MDD with NSSI alone, suggesting levels of cortisol and CRP were inversely correlated with SAs in patients with adolescent MDD with NSSI. Furthermore, multivariate regression analysis revealed that NSSI frequency in the last month and CRP levels were suicidal ideation predictors in adolescent MDD with NSSI, which may indicate that the increased frequency of NSSI behavior is a potential risk factor for suicide. Additionally, we explored the correlation between psychological and blood biochemical indicators to distinguish suicide attempters among participants having adolescent MDD with NSSI and identified a unique correlation network that could serve as a marker for suicide attempters. Our research data further suggested a complex correlation between the psychological and behavioral indicators of impulsivity and anger. Therefore, our study findings may provide clues to identify good clinical warning signs for SA in patients with adolescent MDD with NSSI.


Assuntos
Transtorno Depressivo Maior , Comportamento Autodestrutivo , Adolescente , Humanos , Tentativa de Suicídio , Hidrocortisona , Ira
5.
Diabetes Metab Syndr ; 18(3): 102971, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458077

RESUMO

AIMS: The association of diabetes onset age and duration with incident arrhythmias remains unclear. This study evaluates the association of diabetes onset age and duration with incident arrhythmias and assesses modifications by the genetic predisposition to atrial fibrillation (AF). METHODS: We included 457,151 participants from the UK Biobank study. Multivariable Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) were used for the association between diabetes status, genetic predisposition, and risk of incident arrhythmias. The polygenic risk score (PRS) for AF comprised 142 single-nucleotide variants. RESULTS: Over 12 years of follow-up, we documented 23,518 AF, 9079 bradyarrhythmia, 9280 conduction system diseases, 3358 supraventricular arrhythmias, and 3095 ventricular arrhythmias. Compared with non-diabetes, the risks of AF increased by 19%, 25%, and 36% for those with diabetes durations <5, 5-9, and ≥10 years, respectively. After multivariate adjustment, with the increase in diabetes onset age, the HRs of outcomes were gradually attenuated. The multivariable-adjusted HRs (95% CI) of diabetes for AF were 1.46 (1.24-1.71) in early middle age (<55 years), 1.21 (1.12-1.30) in late middle age (55-64 years), and 1.15 (1.06-1.24) in the elderly population (≥65 years). A significant interaction between diabetes status and AF-PRS for incident AF was observed (P for interaction <0.001). The same trends were observed for the other arrhythmias. CONCLUSIONS: Diabetes was associated with higher risks of incident arrhythmias, and younger age at onset of diabetes was significantly associated with higher risk of subsequent arrhythmias.

6.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
7.
Nat Commun ; 15(1): 2406, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493186

RESUMO

Microbial interactions can lead to different colonization outcomes of exogenous species, be they pathogenic or beneficial in nature. Predicting the colonization of exogenous species in complex communities remains a fundamental challenge in microbial ecology, mainly due to our limited knowledge of the diverse mechanisms governing microbial dynamics. Here, we propose a data-driven approach independent of any dynamics model to predict colonization outcomes of exogenous species from the baseline compositions of microbial communities. We systematically validate this approach using synthetic data, finding that machine learning models can predict not only the binary colonization outcome but also the post-invasion steady-state abundance of the invading species. Then we conduct colonization experiments for commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in hundreds of human stool-derived in vitro microbial communities, confirming that the data-driven approaches can predict the colonization outcomes in experiments. Furthermore, we find that while most resident species are predicted to have a weak negative impact on the colonization of exogenous species, strongly interacting species could significantly alter the colonization outcomes, e.g., Enterococcus faecalis inhibits the invasion of E. faecium invasion. The presented results suggest that the data-driven approaches are powerful tools to inform the ecology and management of microbial communities.


Assuntos
Enterococcus faecium , Microbiota , Humanos , Fezes/microbiologia , Interações Microbianas , Enterococcus faecalis
8.
Adv Mater ; : e2313152, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491731

RESUMO

Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.

9.
ACS Appl Mater Interfaces ; 16(12): 14489-14502, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478962

RESUMO

Multimodal tumor therapy with nanotechnology is an effective and integrative strategy to overcome the limitations of therapeutic efficacy and possible side effects associated with monotherapy. However, the construction of multimodal treatment nanoplatforms often involves various functional components, leading to certain challenges, such as time-consuming synthesis processes, low product yield, and inadequate biocompatibility. To address these issues, we have developed a straightforward method for preparing ultrathin Cu9S5 nanosheets (NSs) with surface defects for photothermal/photodynamic/chemodynamic therapy. The ultrathin morphology of the Cu9S5 NSs (with 2-3 nm) not only confers excellent biocompatibility but also enables broad-spectrum absorption with a remarkable photothermal conversion efficiency (58.96%) under 1064 nm laser irradiation. Moreover, due to the presence of a S vacancy, these Cu9S5 NSs exhibit favorable enzyme-like properties, including reactive oxygen species generation and glutathione consumption, particularly under laser irradiation. The efficacy of related tumor therapy and antibacterial treatment is significantly enhanced by the synergistic activation of photothermal/photodynamic/chemodynamic therapy through 1064 nm laser irradiation, as demonstrated by both in vitro and in vivo experiments. This study presents a novel strategy for multimodal tumor therapy with the prepared ultrathin Cu9S5 NSs, which holds promising pathways for photodynamic therapy in the NIR-II region.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Terapia Combinada , Fototerapia , Enxofre , Linhagem Celular Tumoral
10.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429900

RESUMO

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulação para Cima/genética
11.
Aging (Albany NY) ; 16(7): 6008-6034, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536014

RESUMO

Thyroid eye disease (TED) has brought great physical and mental trauma to patients worldwide. Although a few potential signaling pathways have been reported, knowledge of TED remains limited. Our objective is to explore the fundamental mechanism of TED and identify potential therapeutic targets using diverse approaches. To perform a range of bioinformatic analyses, such as identifying differentially expressed genes (DEGs), conducting enrichment analysis, establishing nomograms, analyzing weighted gene correlation network analysis (WGCNA), and studying immune infiltration, the datasets GSE58331, GSE105149, and GSE9340 were integrated. Further validation was conducted using qPCR, western blot, and immunohistochemistry techniques. Eleven ferroptosis-related DEGs derived from the lacrimal gland were originally screened. Their high diagnostic value was proven, and diagnostic prediction nomogram models with high accuracy and robustness were established by using machine learning. A total of 15 hub gene-related DEGs were identified by WGCNA. Through CIBERSORTx, we uncovered five immune cells highly correlated with TED and found several special associations between these immune cells and the above DEGs. Furthermore, EGR2 from the thyroid sample was revealed to be closely negatively correlated with most DEGs from the lacrimal gland. High expression of APOD, COPB2, MYH11, and MYCN, as well as CD4/CD8 T cells and B cells, was verified in the periorbital adipose tissues of TED patients. To summarize, we discovered a new gene signature associated with ferroptosis that has a critical impact on the development of TED and provides valuable insights into immune infiltration. These findings might highlight the new direction and therapeutic strategies of TED.


Assuntos
Ferroptose , Oftalmopatia de Graves , Ferroptose/genética , Humanos , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/imunologia , Oftalmopatia de Graves/patologia , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Biologia Computacional , Glândula Tireoide/imunologia , Glândula Tireoide/patologia , Glândula Tireoide/metabolismo , Transcriptoma , Aparelho Lacrimal/imunologia , Aparelho Lacrimal/patologia , Aparelho Lacrimal/metabolismo , Bases de Dados Genéticas , Nomogramas
12.
Int J Biol Macromol ; 265(Pt 1): 130713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471612

RESUMO

Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.


Assuntos
Brassica napus , Quitosana , Nanopartículas , Humanos , Quitosana/química , Portadores de Fármacos/química , Preparações de Ação Retardada , Brassica napus/metabolismo , Alginatos/química , Nanopartículas/química , Glucose , Peptídeos
13.
J Chromatogr Sci ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38446787

RESUMO

Qizhi Xiangfu Pills (QZXFPs) is one of the most commonly used traditional Chinese medicine preparations for the treatment of dysmenorrhea, but the existing quality evaluation standards have certain shortcomings and deficiencies. An effective and scientific quality evaluation method plays a vital role in medication safety. In this study, fingerprint combined with chemometric analysis and quantitative analysis of multi-components by a single marker (QAMS) method was used to comprehensively evaluate the quality of QZXFPs. The fingerprints of 28 batches samples were established and 23 common peaks were distinguished, of which 7 peaks were identified as albiflorin, paeoniflorin, baicalin, ligustilide, cyperotundone, nootkatone and α-cyperone. The content of these seven active ingredients was determined simultaneously by the QAMS method and there was no significantly different between QAMS and the external standard method. Additionally, similarity analysis, hierarchical cluster analysis, principal component analysis and orthogonal partial least squares discrimination analysis were applied for classifying the 28 batches of samples, and to find the main components causing the quality differences between different batches. In conclusion, the established method can comprehensively evaluate the consistency of quality between different batches and provide a reference for formulation quality evaluation to ensure safe and effective application of QZXFPs.

14.
Eur J Med Res ; 29(1): 161, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475836

RESUMO

BACKGROUND: In cancer patients receiving immune checkpoint inhibitors (ICIs), there is emerging evidence suggesting a correlation between gut microbiota and immune-related adverse events (irAEs). However, the exact roles of gut microbiota and the causal associations are yet to be clarified. METHODS: To investigate this, we first conducted a univariable bi-directional two-sample Mendelian randomization (MR) analysis. Instrumental variables (IVs) for gut microbiota were retrieved from the MiBioGen consortium (18,340 participants). GWAS summary data for irAEs were gathered from an ICIs-treated cohort with 1,751 cancer patients. Various MR analysis methods, including inverse variance weighted (IVW), MR PRESSO, maximum likelihood (ML), weighted median, weighted mode, and cML-MA-BIC, were used. Furthermore, multivariable MR (MVMR) analysis was performed to account for possible influencing instrumental variables. RESULTS: Our analysis identified fourteen gut bacterial taxa that were causally associated with irAEs. Notably, Lachnospiraceae was strongly associated with an increased risk of both high-grade and all-grade irAEs, even after accounting for the effect of BMI in the MVMR analysis. Akkermansia, Verrucomicrobiaceae, and Anaerostipes were found to exert protective roles in high-grade irAEs. However, Ruminiclostridium6, Coprococcus3, Collinsella, and Eubacterium (fissicatena group) were associated with a higher risk of developing high-grade irAEs. RuminococcaceaeUCG004, and DefluviitaleaceaeUCG011 were protective against all-grade irAEs, whereas Porphyromonadaceae, Roseburia, Eubacterium (brachy group), and Peptococcus were associated with an increased risk of all-grade irAEs. CONCLUSIONS: Our analysis highlights a strong causal association between Lachnospiraceae and irAEs, along with some other gut microbial taxa. These findings provide potential modifiable targets for managing irAEs and warrant further investigation.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Neoplasias , Humanos , Análise da Randomização Mendeliana , Imunoterapia
15.
J Transl Med ; 22(1): 257, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461288

RESUMO

BACKGROUND: Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS: Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS: Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS: Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.


Assuntos
Multiômica , Defeitos do Tubo Neural , Gravidez , Feminino , Animais , Camundongos , Doenças Neuroinflamatórias , Estudos Prospectivos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Sistema Nervoso Central/patologia
16.
Chemistry ; : e202400402, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362815

RESUMO

Mesoporous metal nanomaterials (MPMNs) are pivotal in nanotechnology, especially in electrochemical applications, due to their unique structure. Unlike traditional nanomaterials, MPMNs possess hierarchical and mesoporous characteristics, providing more active sites for improved mass and electron transfer. This distinctive composition offers dual benefits, enhancing activity, stability, and selectivity for specific reactions. The intricate architecture, featuring interconnected pores, amplifies surface area, ensuring efficient use of active sites and boosting reactivity in electrocatalytic processes. Additionally, the mesoporous nature promotes superior diffusion kinetics, facilitating better transport of reactants and products. This intricate interplay of structural elements contributes not only to the increased efficiency of electrochemical reactions but also to the extended durability of MPMNs during prolonged usage. This concept focus on the synthesis and design strategies of MPMNs, aligning with the dynamic requirements of diverse electrocatalytic applications. The synergy resulting from these advancements not only accentuates the intrinsic properties of MPMNs but also broadens their scope for practical implementation in emerging fields of electrochemistry.

17.
Biomimetics (Basel) ; 9(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392144

RESUMO

In this paper, an adaptive knee joint orthosis with a variable rotation center for biomimetic motion rehabilitation assistance suitable for patients with knee joint movement dysfunction is designed. Based on the kinematic information of knee joint motion obtained by a motion capture system, a Revolute-Prismatic-Revolute (RPR) model is established to simulate the biomimetic motion of the knee joint, then a corresponding implementation for repetitively driving the flexion-extension motion of the knee joint, mainly assembled by a double-cam meshing mechanism, is designed. The pitch curve of each cam is calculated based on the screw theory. During the design process, size optimization is used to reduce the weight of the equipment, resulting in a reduction from 1.96 kg to 1.16 kg, achieving the goal of lightweight equipment. Finally, a prototype of the designed orthosis with the desired biomimetic rotation function is prepared and verified. The result shows that the rotation center of the prototype can achieve biomimetic motion coincident with the rotation center of an active knee joint, which can successfully provide rehabilitation assistance for the knee joint flexion-extension motion.

18.
Nat Cancer ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347143

RESUMO

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.

19.
Mater Today Bio ; 25: 100960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322658

RESUMO

Chronic inflammation can delay wound healing, eventually leading to tissue necrosis and even cancer. Developing real-time intelligent inflammation monitoring and treatment to achieve effective wound management is important to promote wound healing. In this study, a smart multifunctional hydrogel (Hydrogel@Au NCs&DG) was proposed to monitor and treat the wound inflammation. It was prepared by mixing 3-carboxy-phenylboronic acid modified chitosan (CS-cPBA), ß-glycerophosphate (ß-GP), albumin-protected gold nanoclusters (BSA-Au NCs), and dipotassium glycyrrhizinate (DG) about 10 s. In this hydrogel, CS-cPBA and ß-GP are crosslinked together by boric acid ester bond and hydrogen bond to form the main hydrogel network, endowing the hydrogel with self-healing and injectable properties to adapt irregular wounds. Importantly, the as-prepared hydrogel with good biocompatibility and excellent adhesion property could directly determine the H2O2 to monitor the wound microenvironment by visible fluorescence change of BSA-Au NCs and then guide the frequency of dressing change to eliminate inflammation. The results demonstrated that the as-prepared smart hydrogel could be expected to serve as an intelligent wound dressing to promote inflammation-infected wound healing.

20.
BMC Gastroenterol ; 24(1): 79, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383296

RESUMO

BACKGROUND: A number of observational studies indicate that insomnia is linked to inflammatory digestive diseases (IDDs). However, the definite relationship between insomnia and IDDs remains unclear. METHODS: We obtained the publicly available data from genome-wide association studies (GWAS) to conduct two-sample Mendelian randomization (MR) for association assessment. Five MR analysis methods were used to calculate the odds ratio (OR) and effect estimate, and the heterogeneity and pleiotropy tests were performed to evaluate the robustness of the variable instruments (IVs). RESULTS: One exposure and twenty outcome datasets based on European populations were included in this study. Using the inverse variance weighted method, we found insomnia was closely correlated with esophageal ulcer (OR = 1.011, 95%CI = 1.004-1.017, p = 0.001) and abdominal pain (effect estimate = 1.016, 95%CI = 1.005-1.026, p = 0.003). Suggestive evidence of a positively association was observed between insomnia and duodenal ulcer (OR = 1.006, 95%CI = 1.002-1.011, p = 0.009), gastric ulcer (OR = 1.008, 95%CI = 1.001-1.014, p = 0.013), rectal polyp (OR = 1.005, 95%CI = 1.000-1.010, p = 0.034), haemorrhoidal disease (OR = 1.242, 95%CI = 1.004-1.535, p = 0.045) and monocyte percentage (effect estimate = 1.151, 95%CI = 1.028-1.288, p = 0.014). No correlations were observed among other IDDs, phenotypes and biomarkers. CONCLUSIONS: Our MR study assessed the relationship between insomnia and IDDs/phenotypes/biomarkers in depth and revealed potential associations between insomnia and ulcers of the esophagus and abdominal pain.


Assuntos
Enteropatias , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Biomarcadores , Dor Abdominal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...